Information storage across a microbial community using universal RNA barcoding – Nature Biotechnology

May Be Interested In:Security startup SplxAI raised $7 million to preemptively police AI. Here’s its pitch deck.


  • Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Soucy, S. M., Huang, J. & Gogarten, J. P. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16, 472–482 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hussain, F. A. et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 374, 488–492 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, T. et al. Horizontal gene transfer enables programmable gene stability in synthetic microbiota. Nat. Chem. Biol. 18, 1245–1252 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kreitz, J. et al. Programmable protein delivery with a bacterial contractile injection system. Nature 616, 357–463 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nikel, P. I., Martínez-García, E. & de Lorenzo, V. Biotechnological domestication of pseudomonads using synthetic biology. Nat. Rev. Microbiol. 12, 368–379 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Brophy, J. A. N. et al. Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nat. Microbiol. 3, 1043–1053 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Blazejewski, T., Ho, H.-I. & Wang, H. H. Synthetic sequence entanglement augments stability and containment of genetic information in cells. Science 365, 595–598 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Heinemann, J. A. & Sprague, G. F. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340, 205–209 (1989).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lopatkin, A. J. et al. Antibiotics as a selective driver for conjugation dynamics. Nat. Microbiol. 1, 16044 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lu, T. K. & Collins, J. J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl Acad. Sci. USA 106, 4629–4634 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhou, H., Beltrán, J. F. & Brito, I. L. Functions predict horizontal gene transfer and the emergence of antibiotic resistance. Sci. Adv. 7, eabj5056 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nazarian, P., Tran, F. & Boedicker, J. Q. Modeling multispecies gene flow dynamics reveals the unique roles of different horizontal gene transfer mechanisms. Front. Microbiol. 9, 2978 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, H.-Y., Masiello, C. A., Bennett, G. N. & Silberg, J. J. Volatile gas production by methyl halide transferase: an in situ reporter of microbial gene expression in soil. Environ. Sci. Technol. 50, 8750–8759 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bethke, J. H. et al. Environmental and genetic determinants of plasmid mobility in pathogenic Escherichia coli. Sci. Adv. 6, eaax3173 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Davison, J. Genetic exchange between bacteria in the environment. Plasmid 42, 73–91 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hughes, V. M. & Datta, N. Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature 302, 725–726 (1983).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Schmidt, M. & de Lorenzo, V. Synthetic constructs in/for the environment: managing the interplay between natural and engineered Biology. FEBS Lett. 586, 2199–2206 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sørensen, S. J., Bailey, M., Hansen, L. H., Kroer, N. & Wuertz, S. Studying plasmid horizontal transfer in situ: a critical review. Nat. Rev. Microbiol. 3, 700–710 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Brito, I. L. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol. 19, 442–453 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Stegemann, S. & Bock, R. Exchange of genetic material between cells in plant tissue grafts. Science 324, 649–651 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hertle, A. P., Haberl, B. & Bock, R. Horizontal genome transfer by cell-to-cell travel of whole organelles. Sci. Adv. 7, eabd8215 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Babić, A., Lindner, A. B., Vulić, M., Stewart, E. J. & Radman, M. Direct visualization of horizontal gene transfer. Science 319, 1533–1536 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat Microbiol 7, 34–47 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Morris, E. R., Grey, H., McKenzie, G., Jones, A. C. & Richardson, J. M. A bend, flip and trap mechanism for transposon integration. eLife 5, e15537 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J 10, 427–436 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yaffe, E. & Relman, D. A. Tracking microbial evolution in the human gut using Hi-C reveals extensive horizontal gene transfer, persistence and adaptation. Nat. Microbiol. 5, 343–353 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cech, T. R. The chemistry of self-splicing RNA and RNA enzymes. Science 236, 1532–1539 (1987).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gambill, L., Staubus, A., Mo, K. W., Ameruoso, A. & Chappell, J. A split ribozyme that links detection of a native RNA to orthogonal protein outputs. Nat. Commun. 14, 543 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Waring, R. B., Towner, P., Minter, S. J. & Davies, R. W. Splice-site selection by a self-splicing RNA of Tetrahymena. Nature 321, 133–139 (1986).

    Article 
    CAS 

    Google Scholar 

  • Sullenger, B. A. & Cech, T. R. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature 371, 619–622 (1994).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Been, M. D. & Cech, T. R. One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity. Cell 47, 207–216 (1986).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bremer, H. & Dennis, P. P.Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus 3, 5.2.3 (2008).

    Article 

    Google Scholar 

  • Bernstein, J. A., Khodursky, A. B., Lin, P.-H., Lin-Chao, S. & Cohen, S. N. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl Acad. Sci. USA 99, 9697–9702 (2002).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bhattarai-Kline, S. et al. Recording gene expression order in DNA by CRISPR addition of retron barcodes. Nature 608, 217–225 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Loveless, T. B. et al. Open-ended molecular recording of sequential cellular events into DNA. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01764-5 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Neil, K., Allard, N., Grenier, F., Burrus, V. & Rodrigue, S. Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl2 conjugative plasmid TP114. Commun. Biol. 3, 523 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Alderliesten, J. B. et al. Effect of donor–recipient relatedness on the plasmid conjugation frequency: a meta-analysis. BMC Microbiol. 20, 135 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, L. et al. Estimating the transfer range of plasmids encoding antimicrobial resistance in a wastewater treatment plant microbial community. Environ. Sci. Technol. Lett. 5, 260–265 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jahn, M., Vorpahl, C., Hübschmann, T., Harms, H. & Müller, S. Copy number variability of expression plasmids determined by cell sorting and droplet digital PCR. Microb. Cell Fact. 15, 211 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ares-Arroyo, M., Rocha, E. P. C. & Gonzalez-Zorn, B. Evolution of ColE1-like plasmids across γ-Proteobacteria: from bacteriocin production to antimicrobial resistance. PLoS Genet. 17, e1009919 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sheth, R. U. & Wang, H. H. DNA-based memory devices for recording cellular events. Nat. Rev. Genet. 19, 718–732 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Munck, C., Sheth, R. U., Freedberg, D. E. & Wang, H. H. Recording mobile DNA in the gut microbiota using an Escherichia coli CRISPR–Cas spacer acquisition platform. Nat. Commun. 11, 95 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schmidt, F. et al. Noninvasive assessment of gut function using transcriptional recording sentinel cells. Science 376, eabm6038 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yang, L. et al. Permanent genetic memory with >1-byte capacity. Nat. Methods 11, 1261–1266 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sheth, R. U., Yim, S. S., Wu, F. L. & Wang, H. H. Multiplex recording of cellular events over time on CRISPR biological tape. Science 358, 1457–1461 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. Molecular recordings by directed CRISPR spacer acquisition. Science 353, aaf1175 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kempton, H. R., Love, K. S., Guo, L. Y. & Qi, L. S. Scalable biological signal recording in mammalian cells using Cas12a base editors. Nat. Chem. Biol. 18, 742–750 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Johns, N. I. et al. Metagenomic mining of regulatory elements enables programmable species-selective gene expression. Nat. Methods 15, 323–329 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ceroni, F., Algar, R., Stan, G.-B. & Ellis, T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods 12, 415–418 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Loveless, T. B. et al. Lineage tracing and analog recording in mammalian cells by single-site DNA writing. Nat. Chem. Biol. 17, 739–747 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jeltsch, A. & Pingoud, A. Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction–modification systems. J. Mol. Evol. 42, 91–96 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weinstock, M. T., Hesek, E. D., Wilson, C. M. & Gibson, D. G. Vibrio natriegens as a fast-growing host for molecular biology. Nat. Methods 13, 849–851 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ferrières, L. et al. Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J. Bacteriol. 192, 6418–6427 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoeflinger, J. L., Hoeflinger, D. E. & Miller, M. J. A dynamic regression analysis tool for quantitative assessment of bacterial growth written in Python. J. Microbiol. Methods 132, 83–85 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71–W74 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Untergasser, A., Ruijter, J. M., Benes, V. & van den Hoff, M. J. B. Web-based LinRegPCR: application for the visualization and analysis of (RT)–qPCR amplification and melting data. BMC Bioinformatics 22, 398 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50, W276–W279 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chakravorty, S., Helb, D., Burday, M., Connell, N. & Alland, D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69, 330–339 (2007).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).

    Article 

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 3, e00021–18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  • Robeson, M. S. et al. RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Comput. Biol. 17, e1009581 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zadeh, J. N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Klümper, U. et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 9, 934–945 (2015).

    Article 
    PubMed 

    Google Scholar 

  • share Share facebook pinterest whatsapp x print

    Similar Content

    UK must expand its Arctic military position, defence review to say
    UK must expand its Arctic military position, defence review to say
    When the physicists need burner phones, that’s when you know America’s changed | John Naughton
    When the physicists need burner phones, that’s when you know America’s changed | John Naughton
    Trump’s insane tariffs are devastating for this critical US industry
    Trump’s insane tariffs are devastating for this critical US industry
    Trump's 2025 address to Congress and Democratic response | CBS News
    Trump’s 2025 address to Congress and Democratic response | CBS News
    Employees and supporters protest outside the headquarters for United States Agency for International Development (USAID), on Monday, February 3, 2025, after Elon Musk posted on social media that he and President Donald Trump would shut down the agency.
    Elon Musk Has No Idea How USAID Works. This Former Staffer Knows.
    Avneet Kaur opens up about facing misbehaviour from boy during Holi, trashing him with bat...: 'He threw a balloon on my bum'
    Sunita Williams’ Stellar Return: Reclaiming health after 9 months in space
    Live and Unfiltered: The Day’s Breaking News | © 2025 | Daily News